Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1866(3): 184285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237885

RESUMO

A biological membrane is a structure characteristic for various cells and organelles present in almost all living organisms. Even though, it is one of the most common structures in organisms, where it serves crucial functions, a phospholipid bilayer may also take part in pathological processes leading to severe diseases. Research indicates that biological membranes have a profound impact on the pathological processes of oligomerization of amyloid-forming proteins. These processes are a hallmark of amyloid diseases, a group of pathological states involving, e.g., Parkinson's or Alzheimer's disease. Even though amyloidogenic diseases reap the harvest in modern societies, especially in elderly patients, the mechanisms governing the amyloid deposition are not clearly described. Therefore, the presented study focuses on the description of interactions between a model biological membrane (POPG) and one of amyloid forming proteins - human cystatin C. For the purpose of the study molecular dynamics simulations were applied to confirm interactions between the protein and POPG membrane. Next the NMR techniques were used to verify how the data obtained in solution compared to MD simulations and determine fragments of the protein responsible for interactions with POPG. Finally, circular dichroism was used to monitor the changes in secondary structure of the protein and size exclusion chromatography was used to monitor its oligomerization process. Obtained data indicates that the protein interacts with POPG submerging itself into the bilayer with the AS region. However, the presence of POPG bilayer does not significantly affect the structure or oligomerization process of human cystatin C.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Humanos , Idoso , Fosfolipídeos/metabolismo , Bicamadas Lipídicas/química , Proteínas Amiloidogênicas/análise , Proteínas Amiloidogênicas/metabolismo , Cistatina C/análise , Cistatina C/metabolismo , Membrana Celular/metabolismo , Amiloide
2.
Environ Microbiol ; 26(1): e16559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151794

RESUMO

Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.


Assuntos
Ferro , Oligopeptídeos , Pseudomonas , Tropolona/análogos & derivados , Pseudomonas/genética , Sideróforos/genética , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética
3.
Biochim Biophys Acta Biomembr ; 1866(3): 184266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151198

RESUMO

This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Humanos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Ouro/química , Cistatina C , Eletrodos
4.
Front Microbiol ; 14: 1307349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098664

RESUMO

Tailocins are nanomolecular machines with bactericidal activity. They are produced by bacteria to contribute to fitness in mixed communities, and hence, they play a critical role in their ecology in a variety of habitats. Here, we characterized the new tailocin produced by Dickeya dadantii strain 3937, a well-characterized member of plant pathogenic Soft Rot Pectobacteriaceae (SRP). Tailocins induced in D. dadantii were ca. 166 nm long tubes surrounded by contractive sheaths with baseplates having tail fibers at one end. A 22-kb genomic cluster involved in their synthesis and having high homology to the cluster coding for the tail of the Peduovirus P2 was identified. The D. dadantii tailocins, termed dickeyocins P2D1 (phage P2-like dickeyocin 1), were resistant to inactivation by pH (3.5-12), temperature (4-50°C), and elevated osmolarity (NaCl concentration: 0.01-1 M). P2D1 could kill a variety of different Dickeya spp. but not any strain of Pectobacterium spp. tested and were not toxic to Caenorhabditis elegans.

5.
Nucleic Acids Res ; 51(19): 10551-10567, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713613

RESUMO

For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand ß1, helices α1 and α2 and in the WH2 domain in loops preceding strands ß1' and ß2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Plasmídeos/genética , DNA/genética , DNA/metabolismo , Aminoácidos/genética
6.
Front Mol Biosci ; 10: 1128320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377864

RESUMO

Earthworms' celomic fluid has long attracted scientists' interest due to their toxic properties. It has been shown that the elimination of coelomic fluid cytotoxicity to normal human cells was crucial for the generation of the non-toxic Venetin-1 protein-polysaccharide complex, which exhibits selective activity against Candida albicans cells as well as A549 non-small cell lung cancer cells. To find the molecular mechanisms behind the anti-cancer properties of the preparation, this research investigated the proteome response of A549 cells to the presence of Venetin-1. The sequential window acquisition of all theoretical mass spectra (SWATH-MS) methodology was used for the analysis, which allows for a relative quantitative analysis to be carried out without radiolabelling. The results showed that the formulation did not induce significant proteome responses in normal BEAS-2B cells. In the case of the tumour line, 31 proteins were up regulated, and 18 proteins down regulated. Proteins with increased expression in neoplastic cells are mainly associated with the mitochondrion, membrane transport and the endoplasmic reticulum. In the case of altered proteins, Venetin-1 interferes with proteins that stabilise the structures, i.e., keratin, glycolysis/gluconeogenesis and metabolic processes.

7.
Sci Rep ; 13(1): 7534, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160956

RESUMO

Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.


Assuntos
Bacteriófagos , Virulência/genética , Enterobacteriaceae , Mutação , Natação
8.
Clin Proteomics ; 20(1): 11, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949424

RESUMO

Salivary stones, also known as sialoliths, are formed in a pathological situation in the salivary glands. So far, neither the mechanism of their formation nor the factors predisposing to their formation are known despite several hypotheses. While they do not directly threaten human life, they significantly deteriorate the patient's quality of life. Although this is not a typical research material, attempts are made to apply various analytical tools to characterise sialoliths and search for the biomarkers in their proteomes. In this work, we used mass spectrometry and SWATH-MS qualitative and quantitative analysis to investigate the composition and select proteins that may contribute to solid deposits in the salivary glands. Twenty sialoliths, previously characterized spectroscopically and divided into the following groups: calcified (CAL), lipid (LIP) and mixed (MIX), were used for the study. Proteins unique for each of the groups were found, including: for the CAL group among them, e.g. proteins from the S100 group (S100 A8/A12 and P), mucin 7 (MUC7), keratins (KRT1/2/4/5/13), elastase (ELANE) or stomatin (STOM); proteins for the LIP group-transthyretin (TTR), lactotransferrin (LTF), matrix Gla protein (MPG), submandibular gland androgen-regulated protein 3 (SMR3A); mixed stones had the fewest unique proteins. Bacterial proteins present in sialoliths have also been identified. The analysis of the results indicates the possible role of bacterial infections, disturbances in calcium metabolism and neutrophil extracellular traps (NETs) in the formation of sialoliths.

9.
Cells ; 12(3)2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36766739

RESUMO

The current prevalence of such lifestyle diseases as mycobacteriosis and tuberculosis is a result of the growing resistance of microorganisms to the available antibiotics and their significant toxicity. Therefore, plants can successfully become a source of new therapeutic agents. The aim of this study was to investigate the effect of protein extract from Sida hermaphrodita seeds on the morphology, structure, and viability of Mycobacterium smegmatis and to carry out proteomic characterization of the protein extract. The analyses were carried out using fluorescence and transmission microscopy, atomic force microscopy, and spectroscopy. The proteomic studies were performed using liquid chromatography coupled to tandem mass spectrometry. The studies showed that the seed extract applied at concentrations of 50-150 µg/mL exerted a statistically significant effect on M. smegmatis cells, that is, a reduction of the viability of the bacteria and induction of changes in the structure of the mycobacterial cell wall. Additionally, the SEM analysis confirmed that the extract did not have a cytotoxic or cytopathic effect on fibroblast cells. The proteomic analysis revealed the presence of structural, storage, and enzymatic proteins and peptides in the extract, which are typical for seeds. Proteins and peptides with antimicrobial activity identified as vicillins and lipid-transporting proteins were also determined in the protein profile of the extract.


Assuntos
Malvaceae , Malvaceae/química , Proteômica , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sementes
10.
Clin Transl Sci ; 16(1): 118-127, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366854

RESUMO

Kidney transplantation remains the therapeutic option for patients with end-stage kidney disease. Current immunosuppressive regimens are efficient in combating acute kidney rejection. However, insights into chronic kidney allograft injury remains limited. Simultaneously, pregnancy is more common after kidney transplantation than during dialysis treatment. Due to ethical issues, comprehensive studies on the impact of immunosuppressive regimens on pregnancy are challenging. The study aimed to investigate the proteomic status of lymphocytes obtained from pregnant female rats under immunosuppressive treatment. The experiment involved a group of 10 female, pregnant Wistar rats, five of which were treated with tacrolimus, mofetil mycophenolate, and glucocorticosteroids; five were used as control. The lymphocytes were obtained and analyzed with mass spectrometry. Measurements were processed by a database search in the ProteinPilot software with a cutoff of 1% false discovery rate. The outcomes were verified statistically by a t-test (p value < 0.05) regarding proteins up- and downregulation. A total of 2082 proteins were identified in all experiments. Eight hundred five proteins were quantified in an absolute manner in a data-independent acquisition-total protein approach analysis. Ninety-five proteins were recognized as present at different concentrations in analyzed groups and were annotated to intracellular pathways. The proteins involved in nonsense-mediated decay and L13a-mediated translational silencing of ceruloplasmin expression were recognized as downregulated. The set of proteins clinically identified as acute phase proteins was upregulated. Despite the blockade of adaptive cellular immunity, the lymphocytes in the analyzed group reveal sustained proinflammatory status with decreased ability to regulate translation. This potentially affects pregnancy and immunity.


Assuntos
Imunossupressores , Linfócitos , Proteômica , Animais , Feminino , Gravidez , Ratos , Rejeição de Enxerto/prevenção & controle , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Linfócitos/metabolismo , Ratos Wistar , Tacrolimo/farmacologia
11.
Sci Rep ; 12(1): 18497, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323731

RESUMO

The present research shows the antitumor activity of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworms against A549 cancer cells. The investigations are a continuation of experiments on the antitumor activity of coelomic fluid obtained from this species. The Venetin-1 nanoparticle was obtained after thermal treatment of the coelomic fluid, separation from coelomocytes, filtration, and lyophilization. The preparation showed a selective effect on cancer cells, whereas normal cells were unaffected. Venetin-1 was effective against the lung cancer cells at doses of 31.3 and 62.5 µg/ml, and the results were imaged using light microscopy and scanning electron microscopy (SEM). The cells died mainly via the apoptosis pathway. Necrotic cells appeared sporadically in the microscopic view. SEM imaging revealed complete destruction of the A549 cells after the incubation with Venetin-1. The atomic force microscopy (AFM) analyses showed changes in the topography, peak force error images, and Young's modulus (elasticity) of the A549 cells after the incubation with Venetin-1. The transmission electron cryomicroscopy (Cryo-TEM) analysis indicated a polymeric nature of the analyzed preparation. The samples of Venetin-1 showed a very homogeneous size profile with the microparticle size of approximately 58.23 nm. A significant decrease in Venetin-1 binding to sphingomyelin was observed. Venetin-1 lost its pore-forming activity or deactivation of the pore-forming activity occurred. This confirms the absence of hemolytic capacity of Venetin-1 towards red blood cells. The conducted analyses show the suitability of the obtained complex for biomedical research. The next step will consist in analyses of the effect of Venetin-1 on the immune system in mice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Oligoquetos , Animais , Camundongos , Humanos , Oligoquetos/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células A549
12.
Sci Rep ; 12(1): 10725, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750797

RESUMO

Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.


Assuntos
Bacteriófagos , Solanum tuberosum , Bacteriófagos/genética , Dickeya , Enterobacteriaceae/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
13.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054801

RESUMO

Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.


Assuntos
Adaptação Fisiológica , Aliivibrio fischeri/fisiologia , Oceanos e Mares , Proteômica , Salinidade , Shewanella/fisiologia , Vibrio/fisiologia , Adaptação Fisiológica/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Concentração Osmolar , Osmose , Pressão Osmótica , Ligação Proteica , Proteoma/metabolismo , Shewanella/genética , Shewanella/metabolismo , Transcrição Gênica , Vibrio/genética , Vibrio/metabolismo
14.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830459

RESUMO

Bacteria of genus Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are believed to play an important role in the pathogenicity and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and MVs production depend on growth medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produces large MVs (100-300 nm) and small vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in the MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to degrade pectates. What is more, the pathogenicity test indicated that the MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that the MVs of ß-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that the MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that the MVs production in Pectobacterium strains, which overexpress a green fluorescence protein (GFP), is higher than in wild-type strains. Moreover, proteomic analysis revealed that the GFP was present in the MVs. Therefore, it is possible that protein sequestration into MVs might not be strictly limited to periplasmic proteins. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an effective secretion system.


Assuntos
Vesículas Extracelulares/genética , Interações Hospedeiro-Patógeno/genética , Pectobacterium/genética , Sistemas de Translocação de Proteínas/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Pectobacterium/ultraestrutura , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sistemas de Translocação de Proteínas/ultraestrutura , Transporte Proteico/genética , Virulência/genética
15.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771131

RESUMO

Our studies aimed to explore the protein components of the matrix of human submandibular gland sialoliths. A qualitative analysis was carried out based on the filter aided sample preparation (FASP) methodology. In the protein extraction process, we evaluated the applicability of the standard demineralization step and the use of a lysis buffer containing sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). The analysis of fragmentation spectra based on the human database allowed for the identification of 254 human proteins present in the deposits. In addition, the use of multi-round search in the PEAKS Studio program against the bacterial base allowed for the identification of 393 proteins of bacterial origin present in the extract obtained from sialolith, which so far has not been carried out for this biological material. Furthermore, we successfully applied the SWATH methodology, allowing for a relative quantitative analysis of human proteins present in deposits. The obtained results correlate with the classification of sialoliths proposed by Tretiakow. The performed functional analysis allowed for the first time the selection of proteins, the levels of which differ between the tested samples, which may suggest the role of these proteins in the calcification process in different types of sialoliths. These are preliminary studies, and drawing specific conclusions requires research on a larger group, but it provides us the basis for the continuation of the work that has already begun.


Assuntos
Proteínas/análise , Proteômica , Cálculos das Glândulas Salivares/química , Ditiotreitol/química , Humanos , Cálculos das Glândulas Salivares/diagnóstico , Dodecilsulfato de Sódio/química
16.
Sci Rep ; 11(1): 18765, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548538

RESUMO

Intravenous recombinant tissue plasminogen activator (rtPA) is, besides mechanical thrombectomy, the highest class evidence based reperfusion treatment of acute ischemic stroke (AIS). The biggest concern of the therapy is symptomatic intracranial hemorrhage (sICH), which occurs in 3-7% of all treated patients, and is associated with worse functional outcome. Finding a method of the powerful identification of patients at highest risk of sICH, in order to increase the percentage of stroke patients safely treated with rtPA, is one of the most important challenges in stroke research. To address this problem, we designed a complex project to identify blood, neuroimaging, and clinical biomarkers combined for prospective assessment of the risk of rtPA-associated ICH. In this paper we present results of blood proteomic and peptide analysis of pilot 41 AIS patients before rtPA administration (the test ICH group, n = 9 or the controls, without ICH, n = 32). We demonstrated that pre-treatment blood profiles of 15 proteins differ depending on whether the patients develop rtPA-associated ICH or not. SWATH-MS quantification of serum or plasma proteins might allow for robust selection of blood biomarkers to increase the prospective assessment of rtPA-associated ICH over that based solely on clinical and neuroimaging characteristics.


Assuntos
Proteínas Sanguíneas/metabolismo , Isquemia Encefálica/tratamento farmacológico , Hemorragias Intracranianas/induzido quimicamente , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Ativador de Plasminogênio Tecidual/administração & dosagem , Adulto Jovem
17.
Sci Rep ; 11(1): 16711, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408181

RESUMO

The isolated protein-polysaccharide fraction (AAF) from the coelomic fluid of Dendrobaena veneta earthworm shows effective activity against Candida albicans yeast. Fungal cells of the clinical strain after incubation with the active fraction were characterized by disturbed cell division and different morphological forms due to the inability to separate the cells from each other. Staining of the cells with acridine orange revealed a change in the pH of the AAF-treated cells. It was observed that, after the AAF treatment, the mitochondrial DNA migrated towards the nuclear DNA, whereupon both merged into a single nuclear structure, which preceded the apoptotic process. Cells with a large nucleus were imaged with the scanning electron cryomicroscopy (Cryo-SEM) technique, while enlarged mitochondria and the degeneration of cell structures were shown by transmission electron microscopy (TEM). The loss of the correct cell shape and cell wall integrity was visualized by both the TEM and SEM techniques. Mass spectrometry and relative quantitative SWATH MS analysis were used to determine the reaction of the C. albicans proteome to the components of the AAF fraction. AAF was observed to influence the expression of mitochondrial and oxidative stress proteins. The oxidative stress in C. albicans cells caused by the action of AAF was demonstrated by fluorescence microscopy, proteomic methods, and XPS spectroscopy. The secondary structure of AAF proteins was characterized by Raman spectroscopy. Analysis of the elemental composition of AAF confirmed the homogeneity of the preparation. The observed action of AAF, which targets not only the cell wall but also the mitochondria, makes the preparation a potential antifungal drug killing the cells of the C. albicans pathogen through apoptosis.


Assuntos
Antifúngicos , Candida albicans , Misturas Complexas , Proteínas Fúngicas/metabolismo , Oligoquetos/química , Polissacarídeos , Proteômica , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/metabolismo , Candida albicans/ultraestrutura , Misturas Complexas/química , Misturas Complexas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Polissacarídeos/química , Polissacarídeos/farmacologia
18.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299044

RESUMO

We present two separate label-free quantitative workflows based on different high-resolution mass spectrometers and LC setups, which are termed after the utilized instrument: Quad-Orbitrap (nano-LC) and Triple Quad-TOF (micro-LC) and their directed adaptation toward the analysis of human follicular fluid proteome. We identified about 1000 proteins in each distinct workflow using various sample preparation methods. With assistance of the Total Protein Approach, we were able to obtain absolute protein concentrations for each workflow. In a pilot study of twenty samples linked to diverse oocyte quality status from four donors, 455 and 215 proteins were quantified by the Quad-Orbitrap and Triple Quad-TOF workflows, respectively. The concentration values obtained from both workflows correlated to a significant degree. We found reasonable agreement of both workflows in protein fold changes between tested groups, resulting in unified lists of 20 and 22 proteins linked to oocyte maturity and blastocyst development, respectively. The Quad-Orbitrap workflow was best suited for an in-depth analysis without the need of extensive fractionation, especially of low abundant proteome, whereas the Triple Quad-TOF workflow allowed a more robust approach with a greater potential to increase in effectiveness with the growing number of analyzed samples after the initial effort of building a comprehensive spectral library.


Assuntos
Biomarcadores/metabolismo , Líquido Folicular/metabolismo , Oócitos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores/análise , Feminino , Fertilização In Vitro , Líquido Folicular/citologia , Humanos , Oócitos/citologia , Projetos Piloto , Fluxo de Trabalho
19.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298965

RESUMO

Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.


Assuntos
Bacteriófagos , Regulação Bacteriana da Expressão Gênica , Mutação , Pectobacterium , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos , Solanum tuberosum/microbiologia , Fatores de Virulência/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Pectobacterium/genética , Pectobacterium/metabolismo , Pectobacterium/patogenicidade , Pectobacterium/virologia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Fatores de Virulência/genética
20.
Membranes (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374166

RESUMO

Studies revolving around mechanisms responsible for the development of amyloid-based diseases lay the foundations for the recognition of molecular targets of future to-be-developed treatments. However, the vast number of peptides and proteins known to be responsible for fibril formation, combined with their complexity and complexity of their interactions with various cellular components, renders this task extremely difficult and time-consuming. One of these proteins, human cystatin C (hCC), is a well-known and studied cysteine-protease inhibitor. While being a monomer in physiological conditions, under the necessary stimulus-usually a mutation, it tends to form fibrils, which later participate in the disease development. This process can potentially be regulated (in several ways) by many cellular components and it is being hypothesized that the cell membrane might play a key role in the oligomerization pathway. Studies involving cell membranes pose several difficulties; therefore, an alternative in the form of membrane mimetics is a very attractive solution. Here, we would like to present the first study on hCC oligomerization under the influence of phospholipid liposomes, acting as a membrane mimetic. The protein-mimetic interactions are studied utilizing circular dichroism, nuclear magnetic resonance, and size exclusion chromatography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...